(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 0208 Roll No.

B. Tech.

(SEM. IV) THEORY EXAMINATION 2011-12 NETWORK ANALYSIS AND SYNTHESIS

Time: 3 Hours

Total Marks: 100

Note: Attempt all questions. Each question carries equal marks.

- 1. Answer any *three* parts of the following: $(6^2/_3 \times 3 = 20)$
 - (a) What do you mean by "THE GRAPH OF A NETWORK"? Also mention its significances and limitations.
 - (b) Explain the following:
 - (i) PLANAR GRAPH
 - (ii) TREE
 - (iii) CO-TREE
 - (iv) REDUCED INCIDENCE MATRIX
 Also mention their importances in the circuit theory.
 - (c) Consider the network shown in Fig. 1.

- (i) Draw the oriented graph of above network shown in Fig. 1.
- (ii) Determine the incidence matrix and reduced incidence matrix of above network shown in Fig. 1.
- (iii) Draw and explain the Cut-set and Tie-set schedule of above network shown in Fig. 1.
- (d) What do you mean by "DUALITY OF GRAPH OF THE NETWORK"? Also mention its utilities and drawbacks.
- (e) What do you understand by "LINEAR GRAPH" and "CO-LINEAR GRAPH" of the given networks? Explain in detail.
- 2. Answer any *two* parts of the following: $(10\times2=20)$
 - (a) State and explain "MAXIMUM POWER TRANSFER THEOREM" in ac network. Also mention its applications and drawbacks.

Consider the network shown in Fig. 2:

Fig. 2

- (i) Obtain the Thevenin's equivalent circuit for the network shown in Fig. 2.
- (ii) Obtain the Norton's equivalent circuit from the Thevenin equivalent circuit for the network shown in Fig. 2.
- (b) State and explain "SUPERPOSITION THEOREM". Show that the superposition theorem is based on linearity and homogeneous of the networks. Consider the network shown in Fig. 3.

Fig. 3

Verify Reciprocity Theorem for V and I for the network shown in Fig. 3.

3

(c) State and explain Millman's Theorem. Also mention its significances and limitations.

Consider the network shown in Fig. 4.

Fig. 4

Verify the Tellegen's Theorem for the network shown in Fig. 4.

- 3. Answer any *two* parts of the following: $(10\times2=20)$
 - (a) Define the following terms regarding two-port networks:
 - (i) [z]-parameters
 - (ii) [h]-parameters
 - (iii) [g]-parameters
 - (iv) [ABCD]-parameters
 - (v) [A'B'C'D']-parameters.

Also mention their importances in circuit theory.

(b) Consider the network shown in Fig. 5.

Fig. 5

Determine open circuit parameters and short circuit parameters of the above network shown in Fig. 5.

(c) For a network the equations are:

$$I_1 = 0.5 V_1 - 0.2 V_2$$
$$I_2 = -0.2 V_1 + V_2$$

Find [Y]-parameters and [ABCD]-parameters of the network. Also find its equivalent Π-network.

- 4. Answer any *two* parts of the following: $(10\times2=20)$
 - (a) What do you understand by concept of Complex frequency? Also discuss the concept of poles and zeros of a transfer function. What are the significances of poles and zeros of a network functions? Define scale factor.

(b) Consider the network shown in Fig. 6.

Fig. 6

Determine the transfer function $\left(\frac{V_{OUT}}{V_{IN}}\right)$ of above network shown in Fig. 6.

(c) A two terminal network consisting of a coil having an inductance L and resistance R shunted by a capacitor C. The poles and zeros of the driving point impedances function Z(s) of this network are shown on Fig. 7.

Fig. 7

If Z(j0) = 1, determine the values of R, L & C.

- 5. Answer any *two* parts of the following: $(10 \times 2 = 20)$
 - (a) A function is given by:

$$F(s) = \frac{s^2 + a_1 s + a_0}{s^2 + b_1 s + b_0}$$

where $[a_0, a_1, b_0]$ and $b_1 \ge 0$ are real and positive numbers. Show that:

$$a_1b_1 \ge [\sqrt{a_0} - \sqrt{b_0}]^2$$

if F(s) is positive real function.

(b) Find the range of values of "m" in polynomials P(s), so that P(s) is Hurwitz:

$$P(s) = 2s^4 + s^3 + ms^2 + s + 2$$
.

Also enlist the properties of RL driving point function.

(c) (i) Synthesize in FOSTER-I and CAUER-II forms:

$$Z(s) = \frac{(s+5)(s+7)}{(s+1)(s+6)(s+8)}.$$

(ii) Differentiate passive and active filters. Also define low pass, high pass, band pass and band elimination filters with the help of their attenuation characteristics.